Changes in contaminant mass discharge from DNAPL source mass depletion: evaluation at two field sites.

نویسندگان

  • Michael C Brooks
  • A Lynn Wood
  • Michael D Annable
  • Kirk Hatfield
  • Jaehyun Cho
  • Charles Holbert
  • P Suresh C Rao
  • Carl G Enfield
  • Kira Lynch
  • Richard E Smith
چکیده

Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, Washington. Passive Flux Meters (PFM) and a variation of the Integral Pumping Test (IPT) were used to measure fluxes in ten wells installed along a transect down-gradient of the trichloroethylene (TCE) source zone, and perpendicular to the mean groundwater flow direction. At both sites, groundwater and contaminant fluxes were measured before and after the source-zone treatment. The measured contaminant fluxes (J; ML(-2)T(-1)) were integrated across the well transect to estimate contaminant mass discharge (M(D); MT(-1)) from the source zone. Estimated M(D) before source treatment, based on both PFM and IPT methods, were approximately 76 g/day for TCE at the Hill AFB site; and approximately 640 g/day for TCE, and approximately 206 g/day for cis-dichloroethylene (DCE) at the Ft. Lewis site. TCE flux measurements made 1 year after source treatment at the Hill AFB site decreased to approximately 5 g/day. On the other hand, increased fluxes of DCE, a degradation byproduct of TCE, in tests subsequent to remediation at the Hill AFB site suggest enhanced microbial degradation after surfactant flooding. At the Ft. Lewis site, TCE mass discharge rates subsequent to remediation decreased to approximately 3 g/day for TCE and approximately 3 g/day for DCE approximately 1.8 years after remediation. At both field sites, PFM and IPT approaches provided comparable results for contaminant mass discharge rates, and show significant reductions (>90%) in TCE mass discharge as a result of DNAPL mass depletion from the source zone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

70-86 Gw J-f 05

Chlorinated solvents are the most prevalent organic contaminants found in ground water (Stroo et al. 2003), and in the dissolved phase they are typically mobile and recalcitrant, particularly trichloroethylene (TCE) and tetrachloroethylene (PCE). Schwille (1984, 1988) was the first to recognize that chlorinated solvent plumes (i.e., zones of dissolved phase contaminants) are caused by immobile ...

متن کامل

Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.

A detailed field-scale investigation of processes controlling the architecture, persistence and dissolution of a 20 to 45year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) source zone located within a heterogeneous sand/gravel aquifer at a UK industrial site is presented. The source zone was partially enclosed by a 3-sided cell that allowed detailed longitudinal/fence transec...

متن کامل

Chlorinated ethene source remediation: lessons learned.

Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often released as dense nonaqueous phase liquids (DNAPLs). These contaminants are difficult to remediate, particularly their source zones. This review summarizes the progress made in improving DNAPL source zone remediation over the past decade, and is structured to highlight th...

متن کامل

Coupled Hydrologic and Geophysical Inversion for Characterization of Nonaqueous Phase Source Zones

Concentration plume evolution and chemical persistence at chlorinated solvent contaminated sites are typically controlled by the presence of dense nonaqueous phase liquid (DNAPL) mass within a highly contaminated region or DNAPL source zone. Characterization of both the extent and structure of the source zone DNAPL mass distribution is, thus, of great importance to site assessment and successfu...

متن کامل

Estimating mass discharge from dense nonaqueous phase liquid source zones using upscaled mass transfer coefficients: An evaluation using multiphase numerical simulations

[1] Difficulties associated with identifying the dense nonaqueous phase liquid (DNAPL) source zone architecture at the field scale, combined with the computational costs of field-scale DNAPL dissolution simulations, have motivated the development of a number of simplified models that rely upon upscaled (i.e., domain-averaged) mass transfer coefficients to approximate field-scale dissolution pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of contaminant hydrology

دوره 102 1-2  شماره 

صفحات  -

تاریخ انتشار 2008